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Abstract 

There are more than 350000 amputees in the US who suffer loss of functionality in their 

daily living activities, and roughly 100000 of them are upper arm amputees.  Many of these 

amputees use prostheses to compensate part of their lost arm function, including power 

prostheses.  Research on 6-7 degree of freedom powered prostheses is still relatively new, and 

most commercially available powered prostheses are typically limited to 1 to 3 degrees of 

freedom.  Due to the myriad of possible options for various powered protheses from different 

manufacturers, each configuration is governed by a distinct control scheme typically specific to 

the manufacturer.  The user will then have to be accustomed to its custom control scheme to be 

able to use such protheses for ADL tasks.  Control of available powered prosthesis options utilize 

different strategies such as individual joint control, partial endpoint control, or switching 

between different modes that is mentally demanding for the user leading to possible 

abandonment of such devices in favor of more passive systems.  To overcome such issues, a novel 

resolved rate algorithm using Cartesian control was developed for universal use by having the 

user specify where the end effector must go through visual targeting.  This is achieved by utilizing 

an augmented reality device “Magic Leap” to provide the spatial targeting information to the 

controller, which will then autonomously move the end effector to the targeted location.  This 

controller system is simulated on a virtual humanoid arm model and tested on a Human Arm 

Robotic Unit, which is the hardware version of the arm model. 
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Chapter 1: Introductions 

1.1 History 

The DEKA arm is a 7 DOF robotic prosthesis arm system that mimicked a natural arm 

developed by DARPA for veteran amputee rehabilitation [Resnik et al, 2018] as shown in (Figure 

1.1).  Historically, the system’s robotic arm motion was controlled by employing several 

positioning inputs for each respective joint, and preprogramed commands for various hand grips.  

The major drawback of its control scheme was that it was mentally and physically fatiguing just 

to move the arm to a desired location especially through prolonged use [Philips et al, 2013]. 

 

Figure 1.1: DEKA Arm 

Reprinted from “Endpoint Control for a Powered Shoulder Prosthesis,” by S.L. Phillips, L. Resnik, 

C. Fantini, and G. Latlief, Journal of Prosthetics and Orthotics, Vol. 25, No. 4, pp. 193-200, 2013. 

Reprinted with permission. 

1.2 Motivation 

In analyzing the DEKA System, we found out that it employs 12 different positioning inputs 

along with one switching input just to place the hand where the user wants it in space with the 
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wrist oriented properly which would use an inertial measurement unit (IMU) mounted on a free 

foot as the “joystick” controller [Resnik et al, 2013].  Afterwards, another input is required to 

switch the system to the Grip Control Scheme and the user must select a pre-programmed grip 

by cycling through the choices using another switch.  This method, while effective, does have 

some drawbacks: (i) the user must fine tune the final hand and wrist location via the 12 position 

inputs, and (ii) the user must frequently use a switch input back and forth to control various 

segments of the arm, which can cause frustration and fatigue on the user.  We believe that these 

input requirements are a major contributor to the complexity of use and led us to speculate that 

the current control effort would eventually compound into mental and physical fatigue for the 

user [Philips et al, 2013]. 

The proposed project’s goal is to minimize the complexity of controlling the arm system 

by optimizing the control scheme of the unit and create a human-like arm motion.  To achieve 

this goal, we integrated sensory information to feed directly to the arm controller in order to 

create arm trajectories that can help the user readily complete typical ADL tasks as well as reduce 

the mental and physical load of using the prosthesis.  The controller must also be agnostic that it 

can be applied to other types of powered prosthesis without significant modification. 

One aspect of this project is the use of visual servoing principles [Perez et al, 2016] to 

control the arm end effector (hand) position relative to the user.  Using a wearable headset that 

can track distance and position based on eye gaze, the user can target an object within their 

vicinity just by looking at it and activating a trigger.  The subsequent sensory information will then 

provide the required spatial cartesian coordinates to the robotic arm controller to create a 
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trajectory from its current position to the target object.  The controller will then move the end 

effector (in this case, hands, and wrist) towards the desired location.  
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Chapter 2: Background Literature Review 

2.1 Existing Powered Prostheses  

Initial research on different types of available powered prosthesis, as shown in (Table 2.1), 

indicated that while powered prostheses are commonly used as an assistive technology, due to 

the myriad of possible options for various powered protheses from different manufacturers each 

configuration is governed by a distinct control scheme typically specific to that manufacturer.  

The user will then have to be accustomed to its custom control scheme, typically some form of 

myoelectric control, to be able to use the prothesis for ADL tasks.  Important also to note is that 

these devices are typically limited to 1-3 degrees of freedom (DOF).  Prostheses that utilize 6-7 

DOF are still under research and development, and only few had made it to commercialization. 

Table 2.1: Various Manufacturers of Consumer Powered Prosthesis 

Description Manufacturer Key Items 

DynamicArm[Ottobock, 
2019] 

Ottobock 

1. 50 N Lifting Force 
2. Flexion Angle 15 to 145 degrees 

3. Myoelectric Type 
4. Software Controlled 
5. 6 kg Max Lift Weight 

MyoRotronic[Ottobock, 
2019] 

Ottobock 

1. Allows for Electromotive Pronation and 
Supination, and open and close hand 

2. Combine with MyoWrist (Passive) for Flexion 
and extension 

Utah Arm 
U3/U3+[Fillauer, 2019] 

Fillauer 

1. 22 kg Max load limit 
2. 135 deg excursion range (20 - 155) 

3. 1.2 sec excursion time 
4. Humeral Rotation with Quick Disconnect 

Wrist - 360 deg 
5. Software Controlled 
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Table 2.1: Continued 

Description Manufacturer Key Items 

Boston Arm[Liberating 
Technologies Inc, 2012] 

Liberating 
Technologies 

(LTI) 

1. Lift 10ftlbs 
2. 8 inputs, 4 outputs 

3. Flexion Angle 0 - 135 
4. Terminal Device Board for multi options 

In Hand Wrist 
Rotator[Fillauer, 2019] 

Fillauer 

1. Motor Drive 
2. High torque 15inlbs 

3. 32 rpm 
4. Microprocessor control 

BeBionic[Ottobock, 
2020] 

Ottobock 

1. 14 grip patterns 
2. 2 thumb positions 

3. Battery installed in arm 
4. Software Control 

Michelangelo[Ottobock, 
2020] 

Ottobock 
1. Control by AxonSoft software 

2. 7 patterns by default 

Taska[Fillauer, 2018] Fillauer 

1. Water Resistant 
2. 23 grips 

3. Software Support 
4. Passive Wrist 

iLimb[Ossur, 2020] 
Ossur/Touch 

Bionic 

1. Up to 24 grips available, can program extra 
12 

2. App controlled 

2.2 Control Strategies 

Upper limb prosthesis development has seen some significant development recently with 

its integration of robotics.  Good comparative examples born from DARPA are the DEKA and John 

Hopkins’ Applied Physics Lab’s (APL) Modular Prosthetic Limb (MPL) with the intention of 

integrating a neural interface for controlling the arm, along with a slew of other capabilities 

[Johannes et al, 2011].  However, such development comes with challenges.  [Resnik et al, 2018] 

noted that as the demand of such devices increases, the effectiveness of using such a device will 

now be a factor due to its high cost.  Many users will reject such devices if it proves to be too 
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complicated to use [Resnik et al, 2017].  Evaluations done by [Resnik et al, 2017] found that while 

a robotic prosthesis like DEKA does allow for some added capabilities, it mostly supplements 

rather than replaces other standard prosthesis.  This indicates that such robotic systems still have 

a long way to go as a front runner solution for amputees. 

Controlling a powered prothesis presents several challenges and complexities depending 

on the degree of the amputation.  As an example, a powered prosthesis replacement for a 

shoulder amputee means the person must impart more effort to control all the degrees of 

freedom to accomplish a typical activity of daily living (ADL) [Resnick et al, 2018].  With most 

standard powered prosthesis available, the widely adopted control scheme is Direct Joint 

Control.  This can entail several different configurations such as: 1) sequential control, 2) 

simultaneous control, 3) Linked movements, and/or 4) combination of 1 & 2.  Ultimately, these 

control schemes have drawback that normally translate as difficulty in use for the user [Phillips 

et al, 2013]. To check if the control system can be optimized, evaluation was done using a partial 

endpoint control scheme [Phillips et al, 2013].  Partial endpoint control entails simultaneous 

actuation of some of the power joints to bring the endpoint to a desired partial (limited) spatial 

location through inverse kinematics.  This method reduces the amount of user input for motion 

compared to the joint control, and it is possible to simulate a more natural arm movement. 

Computer vision systems can also be effectively used to directly or supplement control of 

robotic manipulators with the main goal of reducing the amount of cognitive load it takes to 

control the system.  [Perez et al, 2016] presented and compared a comprehensive list of various 

techniques and sensors already being used with robotic manipulators such as stereo vision, time 

of flight, and structured light strategies just to name a few.  [Kofman et al, 2005] presented his 
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work on using a vision-based system to provide feedback to the robotic manipulator for accuracy.  

[Fujii et al, 2013] utilized a gaze system for cartesian control of a robotic arm for fine surgical 

movement.  [Leeper et al, 2010] evaluated the feasibility of using stereo vision for robotic 

grasping in a cluttered workspace, while [Ramisa et al, 2012] showcased a method of robotic 

grasping specifically for clothes using depth and appearance feature detection.  Visual sensor 

assisted systems also help give greater control of the unit to the user increasing its performance 

efficiency by reducing the amount of user required input as well as robotic arm execution times 

as shown by [Yu et al, 2003].  More specifically to powered prothesis, [Ghazaei et al, 2017] was 

also able to showcase combining computer vision with deep learning to increase grip 

functionality in hand prosthesis by classifying target objects for grasping, and having the AI 

determine the required grasp type. 

2.3 Human Machine Interfaces [HMI] 

Since the secondary portion of our research involves integrating a visual platform to track 

targets or point locations, we looked at various research already being implemented.  Regarding 

the initial target acquisition by stereo vision, several researches into this field have investigated 

its feasibility.  Using stereo vision systems, [Kang et al, 2008] were able to capture distance and 

velocity measurements from a target with good accuracy.  [Wang et al, 2009] used binocular 

stereo vision for target detection by filtering out noise and background data and was successful 

in detecting a moving object.  [Postelnicu et al, 2011] even utilized electrooculography (EOG) and 

electroencephalography (EEG) to control a robotic arm. 
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Chapter 3: Research Goal and Objectives 

3.1 Research Goal 

The goal of this research is to present a novel approach to use an existing prosthetic arm 

technology to assist amputees by developing a new universal control system for upper arm 

powered prostheses to reduce the amount of effort needed to operate the arm, utilizing a robust 

controller program with visual servoing principles, and to implement this with an actual robotic 

arm unit.  In the future, the plan also is to add artificial intelligence (AI) to the vision system and 

motion controller in relation to object recognition and intention recognition in order to increase 

the efficiency of the system so users will acclimate easier to using powered prostheses, regardless 

of the type of manufacturer or design and control configurations. 

The system we are proposing involves using visual servoing principles to control the most 

common powered prosthetic devices.  This will utilize a wearable head mounted visual sensor, in 

the form of a state-of-the-art augmented reality (AR) goggles, to determine the intended location 

of the end effector/hand and the intended target objects the user wishes to interact with.  Eye 

gaze and sensory information from the AR device can determine the required coordinates of 

objects and provide the information to the prosthetic arm controller once an object is selected 

through a specific trigger and lock on to a target point.  The controller can then be programmed 

to determine the requisite kinematics equations and plan a path of the end effector towards the 

desired location.  Once the path is set, the user uses a single input to control the speed along the 

path to the intended target. 
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Of the existing technologies that can be implemented to better control the prostheses, 

visual servoing with sensory feedback information promises to be a viable solution.  Our 

proposed new control system for powered prostheses, as shown in (Figure 3.1), should be easier 

to implement and use than existing methods without any significant change to the existing 

hardware.  

 

Figure 3.1: High Level System Flowchart 

3.2 Research Objectives 

Due to the amount of effort to develop such a system, this research was broken up into 

distinct specific objectives.  For this thesis, the objectives for this portion of work are as follows: 

1. Develop a sensory suite software for the advanced wearable sensor technologies 

to determine the telemetry information required for the robotic arm trajectories 

2. Develop hardware for the robotic arm unit as well as the subsequent motion 

controller software 

3. Integrate both the hardware and software required for the arm to function 

4. Perform testing and assessment on relevant metrics such as accuracy, speed, and 

stability. 
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Successful completion of the above objectives will allow further development of the 

planned artificial intelligent capabilities and bring the system further closer to human subject 

testing. 
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Chapter 4: Hanson Arm Solid Model and Kinematics 

4.1 Hanson Arm Solid Model 

 

Figure 4.1: Hanson Arm 3D Model 
Note: CC-BY-SA 4.0 by Copyright Holder 

The base model of the arm system we are using, as shown in (Figure 4.1), was designed 

by Gerardo Morales as part of the development of the Sophia Robot Project by Hanson Robotics 

Ltd [Morales, 2018].  The arm has 7 degree of freedom (DoF) and is proportional to the typical 

dimensions of an adult human arm.  The CAD Software utilized was Solidworks 2017, and the 

design fully incorporates the required hardware that is necessary to physically build the unit.  For 

this project, only the right arm was used.  Successful implementation of the right will then lead 

to the implementation of the left arm in future iterations. 

During the evaluation of the 3D model, it was realized that significant modification was 

required to be able to utilize the parametric data for simulation.  The first major issue was that 

the model was inherently too detailed, and significant effort was needed to remove extraneous 

parts and features to the absolute barebones required for simulation without sacrificing too 
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much of the inherent form and function of the design.  The second major issue was that the origin 

framing of the individual Arm Link Models was tied to a different universal coordinate system 

that is not what will be used in the simulation.  Each individual Arm Link Model’s origin position 

and orientation needed to be updated to the corresponding origin position and orientation that 

will be used for the simulation.  One effect of this was that the Solidworks Mates for assembly of 

the links were altered or broken for the simulation, so two distinct model assembly files would 

be needed for simulation and for actual physical build assembly.  After the modifications were 

completed, the individual links were converted to a minimized resolution “.wrl” 3D format that 

can be used in a Virtual Reality Modeling Language (VRML) Simulation that will be discussed later 

in the thesis. 

4.1.1 Frame Assignments 

 

Figure 4.2: Frame Assignments for the Right Arm 
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The methodology of the frame assignments was to ensure that the kinematics of the arm 

model would apply a zero angle or “rest” state where the robotic arm is hanging freely.  This had 

the effect of introducing offset 90-degree angles to the Denavit-Hartenburg (DH) table as shown 

in (Table 4.1).  Furthermore, since the simulation program utilizes a parent-child relationship for 

connecting the arm links together, for each link connection, the subsequent orientation of the 

origin of the link can force the positive direction of the rotation to inadvertently flip if not 

carefully accounted for.  This was done by tying the sign of any rotation to the axis of Frame 0 / 

Anchor Frame via right hand rule.  (Figure 4.2) shows the final frame assignments localized at 

each link origin.  This will be key in mapping the required kinematic parameters as shown in the 

next section. 

4.1.2 DH Parameters 

To describe the arm kinematically, the arm link parameters are identified using the 

Denavit-Hartenburg (DH) Notation System [Craig, 2018].  The subsequent DH Parameter set up 

for the right arm is shown in (Table 4.1).  This will be used in the subsequent evaluation of the 

Transformation Matrices in the next section. 

Table 4.1: DH Paramaters Hanson Right Arm – Length in CM, Angles in Degrees 

  α(i-1) a(i-1) di θi 

1 0 0 7.63 θ1 

2 90 0 0.52 θ2 

3 90 0 -25.49 θ3 

4 -90 0.29 0 θ4 

5 -90 0.35 23.00 θ5 
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Table 4.1 Continued 

  α(i-1) a(i-1) di θi 

6 -90 0 0 θ6 

7 90 0.5 0 θ7 

8 0 5 0 0 

 
In general, there are a total of 7 distinct mobile joints that actuate the arm up to the hand: 

Shoulder Flexion/Extension (θ1), Shoulder Abduction/Adduction (θ2), Humeral Rotation(θ3), 

Elbow Flexion/Extension(θ4), Wrist Pronation/Supination(θ5), Wrist Flexion/Extension(θ6), and 

Wrist Ulnar/Radial Deviation(θ7).  The hand is modeled in, but it primarily functions as a static 

end effector to help visualize position and orientation for the purposes of this simulation. 

4.2 Kinematics and Redundancy Resolution 

4.2.1 Forward Kinematics and Transformation Matrices 

Utilizing the DH parameters and inputting them in the general from of the Transformation 

Matrices for each links as shown in equation (1) [Craig, 2018], we can get mathematical 

representation for each arm link that determines its general rotation matrix {the upper left 3x3 

portion of the matrix} and its position vector {the upper right 3x1 portion of the matrix}. 

 

Ti
i−1 = [

cos θi −sin θi 0 ai−1

sin θi cos αi−1 cos θi cos αi−1 −sin αi−1 −disin αi−1

sin θi sin αi−1 cos θi sin αi−1 cos αi−1 dicos αi−1

0 0 0 1

] (1) 

 
Since we have a total of 8 links per the DH Parameters table, the overall transformation 

matrix needs to be calculated by concatenating all the link transformations as shown in equation 

(2). 

T8
0 = T1

0 ∗ T ∗ … ∗2
1 T8

7 (2) 
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We will also concatenate each arm link progressively in order to determine the basic 

position matrices for each link in relation to the Zero/Anchor frame.  This will be very important 

for the wireframe simulation that will be created using MATLAB. 

4.2.2 Optimized Jacobian 

The Jacobian “J” matrix is the multidimensional representation of the derivatives that 

relate the joints’ angular velocities vector “q̇” to the end effector Cartesian and angular velocities 

vector “V” as shown in equation (4) and equation (5), where “q” is the joint angles of the robotic 

arm joints as shown in equation (3). 

q = {θ1, θ2, θ3, θ4, θ5, θ6, θ7} (3) 

V = {X, Y, Z, ωx,ωy,ωz} (4) 

V = J
dq

dt
=  J q̇ (5) 

 
Using the velocity propagation technique [Craig, 2018] with the consideration of using 

only revolving joints, we derive the end effector Cartesian velocities (linear and angular 

velocities) and relate them to the Zero/Anchor Datum Frame.  Normally, inverting the Jacobian 

will allow the calculation of the angular velocities vector for each joint, however, the Hanson arm 

system has an inherent redundancy in its design since the 7-DoF nature of the arm can translate 

to an infinite possible solutions set when determining joint angles for any particular end effector 

trajectory, causing the Jacobian to be non-square and therefore not invertible.  To get around 

this, we apply the Weighted Pseudo Inverse Method [Alqasemi et al, 2007] as shown in equation 

(6).  In this method we introduce a diagonal “n x n” , or in our case (7 x7) for 7 joints, positively 

defined Weight Matrix “W”.  Each value of the diagonal corresponds to a specific joint which is 

highly dependent on whether that joints is within the presence of joint limits or singularity.  
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Depending on the value, the program will preferentially move or stop moving that specific joint 

based off the defined ruleset that will be discussed in further detail in the next subsection.  This 

also known as the Weighted Least Norm Optimization Solution. 

q̇ = W−1JT(JW−1JT)−1V (6) 

4.2.3 Weight Matrix - Gradient Projection Method 

To determine the weight matrix “W”, we utilize the joint limit function defined in equation 

(7) [Chan et al, 1995].  As the joints reach the limits, the function goes to infinity, while the 

function goes to 1 when the joint is in the middle between its max and min range.  This 

automatically assigns a high weight to those joints reaching their limits so that they do not move 

any further.  Currently, the limits of the joints were determined using the Solid works CAD model 

while in collision detection mode.  Actual joint limits of the physical build might vary due to 

hardware, wire, and pulley belt considerations; hence these limits can be modified freely without 

any impact to core coding. 

H(q) =  ∑
1

4
∗ 

(qi,max − qi,min)
2

(qi,max − qi)(qi − qi,min)

n

i=1

(7) 

 
The gradient projection of equation (7) takes the form in equation (8) which is used to 

directly optimize the weight matrix.  One can note that the absolute value of equation (8) will be 

zero if the current joint angle is in between the joint limits, and that it will be at infinity if the 

current joint angle is at a joint limit.  Therefore, the higher the absolute value for equation (8), 

the less preference to move that joint. 

∂H(q)

∂qi
= 

(qi,max − qi,min)
2
∗ (2 ∗ qi,current − qi,max − qi,min)

4 ∗ (qi,max − qi,current)
2
∗ (qi,current − qi,min)

2
(8) 
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There are a few caveats however to the gradient projection:  Depending on the size of the 

time step that is used, it is possible that the program might still exceed joint limits under certain 

conditions.  To counter this, we force the values for equation (8) using these conditional tests: 

1. If the absolute value of the previous step is greater than the absolute value of the 

current step, and the current angle is within the joint’s limits, then force the 

current absolute value to be zero.  This indicates that the joint is actively moving 

away from a joint limit. 

2. If the absolute value of the previous step is greater than the absolute value of the 

current step, and the current angle is above or equal the maximum limit or below 

or equal the minimum limit, then force the current absolute value to be infinity.  

This indicates that the joint is within an unsafe zone, therefore we need to freeze 

movement right away of that joint. 

3. If the absolute value of the previous step is less than the absolute value of the 

current step, and the current angle is above or equal the maximum limit, or below 

or equal the minimum limit, then force the current absolute value to be zero.  This 

indicates that the joint is within an unsafe zone, but it is moving back into a safe 

zone within the joint limits. 

The gradient is summarily applied to the weighted matrix as shown in equation (9).  The 

value “F” is the user inputted preference value for the joint which normally would be set to “1”.  

This matrix is then applied to equation (6) to determine the resolved joint angle rates. 
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W = 

[
 
 
 
 
 
 
 F1 + |

∂H(q)

∂q1
| 0 ⋯ 0

0 F2 + |
∂H(q)

∂q2
| 0 0

⋮ ⋮ ⋱ ⋯

0 0 0 F7 + |
∂H(q)

∂q7
|
]
 
 
 
 
 
 
 

(9) 

4.2.4 Singularity Robust Inverse (SRI) 

Singularities appear when an inverse is momentarily impossible due to a momentary loss 

of a degree of freedom due to joint alignments at that moment or if a workspace limitation is 

approached.  In these cases, the determinant of the Jacobian reaches zero.  Since the robotic arm 

is a redundant system, therefore none-square, to determine whether the arm is closing into a 

singularity domain, we need to define an objective function that represents the overall 

manipulability of system [Alqasemi, 2007].  This manipulability measure, defined by equation 

(10), showcases singularity when it equals zero, and showcases stability when the number is high.  

By maximizing this measure “M”, we can exploit redundancies to generate stable arm motion. 

M = √det(J ∗ W ∗ JT) (10) 

 
Depending on the parameters of the robotic arm, the value of “M” can vary significantly 

for different trajectories.  However, the manipulability measure is a good visualizer for the quirks 

of the system.  As mentioned, higher values indicate stable performance, but there will be cases 

when even though the system is closing to a singularity such as a joint limit, the robot will still 

showcase stable operation.  It is within this neighborhood of points where we apply a factor to 

the inverse calculation in equation (6) to ensure the system does not succumb to the singularity 

by sacrificing the positional and rotation trajectory accuracy calculated early on.  This is done by 

figuring out two factors: The Stability Factor “w0“ and an Accuracy Factor “k0“.  The Stability 
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Factor is normally related to the Manipulability measure in equation (10) in that its value is 

typically equal to the highest M value for the system.  The Accuracy Factor relates to the 

minimum value needed to avoid system instability.  The factor “k” is modified according to 

equation (11) [Nakamura, 1991]. 

k = {
k0(1 − M w0⁄ )2, for M < w0

0, for M ≥ w0
(11) 

 
There are special cases, however, when the equation (11) is not enough to avoid system 

instability.  In those cases, a dynamic Stability Factor is utilized as shown in equation (12) which 

once inputted into equation (11) significantly augments the system, sacrificing trajectory 

accuracy in order to facilitate motion until it reaches a more stable regime. 

w0 = {
M2 w0⁄ , for M w0⁄ > 1

w0, for M w0⁄ ≤ 1
(12) 

Equation (6) is then modified to account for this Singularity Robustness as shown in 

equation (13) where “I” is a (6 x 6) Identity Matrix.  This is also known as the Weighted SR Inverse 

Optimization Solution. 

q̇ = W−1JT(JW−1JT + k ∗ I)−1V (13) 

A modification of equation (13) is when “W” is an Identity matrix.  This method will 

remove the joint limit avoidance and becomes known as the SR Inverse Optimization Solution.  

This is utilized as a comparison between the other Optimization Solutions since it applies the SR 

Inverse without the limitation of joint limits. 

4.2.5 Trajectory Generation and Matching 

Determining the trajectory of the end effector will be dependent on a set of user inputted 

Transformation Matrices that will signify the initial position “Pinitial” and rotation “Rotinitial”, and 
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the final position “Pfinal” and rotation “Rotfinal” giving a linear trajectory between them.  The user 

will then specify a speed limit “SL” to determine the maximum cartesian end effector velocity for 

travelling between the two positions.  From here, the cartesian distance is figured out as shown 

in equation (14). 

Distance =  √(xfinal − xinitial)2 + (yfinal − yinitial)2+(zfinal − zinitial)2 (14) 

Once the cartesian distance is found, the time “t” for the end effector to complete the 

trajectory is calculated as shown in equation (15). 

𝑡 =
𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒

𝑆𝐿
(15) 

Next, the user inputs expected number of steps “n” to carry out the motion and the 

resolution of the expected time change per step “dt” is calculated as shown in equation (16). 

dt =
t

n
(16) 

 
From this point, the next step is to determine the positional and rotational errors between 

the current position/orientation of the end effector versus the calculated trajectory for a specific 

time step.  This will be discussed in the next two subsections: Position Errors, and Orientation 

Errors.  The main idea is to minimize the errors between the actual hand position and rotation 

with the calculated trajectory. 

4.2.6 Position Errors 

To calculate the positional errors “dP”, the Cartesian trajectory typically is divided by the 

number of expected steps as shown in equation (17).  This is done prior to the motion of the 

robotic arm.  Typically, the higher the number of steps, the more accurate the expected motion 

for the arm, but at the cost of processing speed. 
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dP =  
Pfinal − Pinitial

n
(17) 

 
The next step is to determine the positional error between the calculated trajectory and 

the actual position of the end effector.  First, the calculated trajectory must be defined as per 

equation (18) to relate to the specific time step “j”. 

Ptraj(j) =  Pinitial + j ∗ dP (18) 
 

Positional error is then simply defined as the error between the current position of the 

hand and the expected trajectory as shown in equation (19) [Luh et Al, 1980]. 

eposition(j) =  Ptraj(j) − Phand(j) =  [

epx(j)

epy(j)

epz(j)

] (19) 

4.2.7 Rotation Errors 

Rotational Trajectory will be calculated using the equivalent or Single Angle and Axis of 

Rotation method [Paul, 1982].  This will be a rotation matrix relating between the initial rotation 

matrix and the final rotation matrix inputted by the user.  This matrix, which will be named “R” 

is defined in equation (20). 

R = Rotinitial
T ∗ Rotfinal (20) 

 
where the values of “R” are shown as in equation (21). 

R =  [

nx ox ax

ny oy ay

nz oz az

] (21) 

 
the Single Angle of Rotation “SA” is then defined as shown in equation (22). 

SA =  Atan2((√(oz − ay)
2
+ (ax − nz)2 + (ny − ox)

2
) , (nx + oy + az − 1) ) (22) 
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The Single Axis of Rotation vector “K” is defined by its components as shown in equation 

(23), (24), & (25) typically good for SA values less than 90 degrees. 

Kx = 
oz − ay

2 ∗ sin(SA)
(23) 

 

Ky = 
ax − nz

2 ∗ sin(SA)
(24) 

 

Kx = 
ny − ox

2 ∗ sin(SA)
(25) 

 
note that if SA is very small, “K” must be renormalized to 1 such Kx = 1, Ky = 0, & Kz = 0. 

If SA values exceed 90 degrees, then the vector “K” is redefined as shown in equations 

(26), (27), & (28). 

Kx = sign(oz − ay)√
nx − cos(SA)

1 − cos(SA)
(26) 

 

Ky = sign(ax − nz)√
oy − cos(SA)

1 − cos(SA)
(27) 

 

Kz = sign(ny − ox)√
az − cos(SA)

1 − cos(SA)
(28) 

 

Note that only the largest element of “K” is calculated by equation (26) – (28).  Depending 

on which element is largest, a more accurate value of the remaining elements is determined by 

the following sets of equations: 

• If Kx is largest: 

Ky =
ny + ox

2 ∗ KX ∗ (1 − cos(SA))
(29) 

 

Kz =
ax + nz

2 ∗ KX ∗ (1 − cos(SA))
(30) 
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• If Ky is largest: 

Kx =
ny + ox

2 ∗ Ky ∗ (1 − cos(SA))
(31) 

 

Kz =
oz + ay

2 ∗ Ky ∗ (1 − cos(SA))
(32) 

 

• If Kz is largest: 

Kx =
ax + nz

2 ∗ Kz ∗ (1 − cos(SA))
(33) 

 

Ky =
oz + ay

2 ∗ Kz ∗ (1 − cos(SA))
(34) 

 
Having an established Single Angle of Rotation will allow to segment the rotation change 

according to equation (35) by the time step.  Note at time step 1, the value of the change is zero. 

dSA =  
SA

n − 1
(35) 

 
The rotational angle trajectory “dA” is then calculated to relate to the specific time step 

“j” is shown in equation (36). 

dA(j) = (j − 1) ∗ dSA (36) 
 
next is to convert dA to a rotational matrix format dR as shown in equation (37). 

dR(j) =  [

KxKx ∗ (1 − cos(dA(j)) + cos(dA(j)) KyKx ∗ (1 − cos(dA(j)) − Kzsin(dA(j)) KzKx ∗ (1 − cos(dA(j)) + Kysin(dA(j))

KxKy ∗ (1 − cos(dA(j)) + Kzsin(dA(j)) KyKy ∗ (1 − cos(dA(j)) + cos(dA(j)) KzKy ∗ (1 − cos(dA(j)) − Kxsin(dA(j))

KxKz ∗ (1 − cos(dA(j)) − Kysin(dA(j)) KyKz ∗ (1 − cos(dA(j)) + Kx sin(dA(j)) KzKz ∗ (1 − cos(dA(j)) + cos(dA(j))

] (37) 

 
finally calculating the Rotational Matrix Trajectory as shown in equation (38). 

Rottraj(j) = RotInitial ∗ dR(j) (38) 
 

Finding now the error between the Rotation Matrix of the End Effector and the Trajectory 

is defined in equation (39) [Luh et al, 1980]. 
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erotation(j) = 0.5 ∗ (Nhand x Ntraj + Ohand x Otraj + Ahand x Atraj) =  [

erx(j)

ery(j)

erz(j)

] (39) 

 
where “N” is column 1, “O” is column 2, and “A” is column 3 of the respective rotation matrix. 

4.2.8 Resolved Rate Method and Updated Forward Kinematics 

The transformation matrices established by equation (2) need to be updated every time 

step to be able to represent the changes in position and rotation already enacted by the 

movement of the arm.  To do this, using the errors established in equations (19) and (39), we can 

create a cartesian velocity vector as shown in equation (40) by dividing the errors with “dt”. 

V = [

eposition

dt
erotation

dt

] (40) 

 

To convert this cartesian velocity vector to individual joint angle velocities, we substitute 

this vector “V” into equation (13) in order to get “q̇”.  In certain instances, the joint velocities can 

reach extremely high values especially if the robotic arm is reaching a singularity point.  To 

prevent any potential damage to the physical robotic arm, we apply a velocity check for the 

current calculated values against a user predetermined angular speed limit “SpeedRev” as shown 

in equation (41). 

Factor =  q̇ SpeedRev⁄ (41) 

Next, we find the maximum “Factor” value of the joint velocities.  If any value is over 1, 

then it means that a joint has exceeded the speed limit and can potentially damage the physical 

robot system.  If we force the exceeding joint or joints to a specific speed, the end effector will 
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start deviating away from its trajectory.   In order to keep the system running smoothly, we divide 

the calculated velocities of the group by the maximum Factor effectively slowing down the 

farthest joint to the speed limit, and the other joints speed, factored down to match the 

percentage drop of the farthest joint as shown in equation (42). 

q̇ =  {
q̇ max(Factor) , formax(Factor) > 1⁄

q̇,                                      formax(Factor) ≤ 1
(42) 

Applying the calculated velocity vector with equation (42) and multiplying out the time 

step, we can get the incremental change in angles for each joint as shown in equation (43). 

dq = q̇ ∗ dt (43) 
 

This new “dq” is added to the old “q” values from the previous step, which the new “q” 

then is used to update equation (2) to generate a new transform matrix, which includes the 

rotation and position components for the end effector. 
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Chapter 5: Programming 

5.1 Programming Overview 

The main programming language chosen for this research is C++ since the SDK’s for Magic 

Leap and the Motors both use that.  While the simulations are performed in MATLAB, the 

functions utilized were converted to C++.  This will be discussed in detail in the following sections. 

An important concept of this research is to implement a wearable HMI System that can 

be coupled with the robotic arm hardware.  Since the plan is to have the user’s vision as part of 

the controller’s input, the HMI must have a reliable eye tracking capability.  It is also necessary 

that the HMI must have a visual feedback feature in the form of a graphical interface to keep the 

user aware and engaged of the working task for the robot arm.  The Magic Leap was chosen for 

this interface since its capabilities, which will be discussed in a later chapter, matched our 

requirements.  It also has the potential for more graphical functionality in the future due to the 

ongoing development work on its software. 

5.2 Control System Flowchart 

The Humanoid Arm Robotic Unit (HARU) Control System is broken up into four distinct 

programming blocks that work in tandem with each other to generate the motion as shown in 

(Figure 5.1).  The code applied is in C++, but each block works off a different libraries and OS in 

its operation and will be discussed in detail in the following sections. 
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Figure 5.1: HARU Control System Flowchart 

5.3 Magic Leap – Lumin SDK 

Magic Leap utilizes its own Operating System called Lumin OS.  The current version used 

for this project is V0.23.  To help facilitate development of programs using Magic Leap, a 

development platform called “The Lab” is used to connect the device to the coding software 

program Visual Studios.  Within the Lab, a subprogram called Lumin Runtime Editor is used to 

develop the augmented reality world components that will be used as the User Interface of our 

controller.  Furthermore, the Lumin Libraries are geared for game development, and most of the 

function calls help facilitate the mathematics associated with handling 3D objects.  Most of the 
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development work have been based off existing tutorials done by Magic Leap modified to suite 

our requirements. 

 

Figure 5.2: Lumin Runtime Editor 

5.3.1 User Interface Development 

Using the Lumin Runtime Editor, as shown in (Figure 5.2), we developed the augmented 

reality components that would be a key visual indicator of the information we wanted to present 

to the user as shown in (Figure 5.3).  This was done utilizing Lumin’s predefined User Interface 

Nodes.  Nodes are a 3D point information structure which serves as the origin point for displaying 

the 3D object in real time space.  For our system, we utilized 2 distinct Nodes: A Text2D node for 

displaying text, and Model node for displaying primitive shapes.  The Text2D nodes we utilized 

are meant to display the coordinate position for our initial and final positional viewing targets, 

and the Model nodes are meant to add a 3D marker on those subsequent points (represented as 

a pyramid), as well as another node showing a marker on the user’s current targeted gaze 

(represented as a cube).  The position and orientation of these nodes are updated based off a 
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selected sensor value such as eye gaze or head position.  This is typically done by a simple 

transform calculation as shown in equations (44) & (45). 

 
Node Position = Inverse(prismTransform) ∗ SensorCalculatedPosition (44) 

 
Node Orientation = Inverse(prismTransform) ∗ SensorCalculatedOrientation (45) 

 

 

Figure 5.3: User Interface View from Headset 

A typical Magic Leap Program works on the concept of world spaces called Prisms.  Prisms 

define the coordinate system in which the program resides.  This is normally placed at the 

discretion of the user at the start of using the program, as shown in (Figure 5.4).  Wherever the 

user initially places the Prism space, defines the (0,0,0) coordinate of the program at that time of 

usage.  This is different from the World Coordinate System that the Headset resides in.  The 

headset, once turned on, defines a world coordinate system in which the origin point is the 

position of where the headset is located.  This is important since telemetry information will need 

to transform between the Prism Coordinate System and the World Coordinate system regularly 

for proper operation of the program as most sensor values are based off the World Coordinate 
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System.  The Node in question is then updated with the required position and orientation values 

that can be viewed from the Headset Display as shown in (Figure 5.3). 

 

Figure 5.4: Prism Visualization 

To minimize cluttering of information in the viewscreen, the program was set up into 

several “states”.  Each state defines what information is available to be presented in the graphical 

interface, and any action the program needs to perform.  The following states are defined as 

follows: 

• State 0:  Defines the initial start state of the eye tracking program.  This is the 

scanning phase of the program for the Initial Position Target.  A targeting reticule 

is visible and is tied to the eye tracking gaze location, and the program is returning 

the 3D position of the reticule as a visual feedback. 

• State 1:  Defines the Initial Position Locked state of the program.  A switch trigger 

will lock the reticule in place, and the position is stored.  The location of that Initial 

Target Position is then given an anchored marker. 
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• State 2:  Defines the scanning phase of the program for the Final Position Target.  

A targeting reticule is visible and is tied to the eye tracking gaze location, and the 

program is returning the 3D position of the reticule as a visual feedback.  

Information from State 1 is kept visible for reference. 

• State 3:  Defines the Final Position Locked state of the program.  A switch trigger 

will lock the reticule in place, and the position is stored.  The location of that Final 

Target Position is then given an anchored marker.  All Information from the 

previous state is kept visible for reference. 

• State 4:  Defines the Output file generation state of the program.  All stored 

telemetry information from the previous states are written in a text file and stored 

on a local device. 

Switching between the states is done using the Magic Leap’s Controller buttons, but this 

can be modified to other switches in the future.  At the end of State 4, the program will restart 

to State 1 and repeat the targeting loop.  The number of states were chosen based of only utilizing 

a two-position waypoint system for generating the arm trajectory.  Should more waypoints be 

necessary, additional states can be implemented.  The following pseudocode shown in (Figure 

5.5) highlights the information between the states. 
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Figure 5.5: Pseudocode for State Structuring for Graphical User Interface 

5.3.2 Sensor Implementation for User Interface (UI) 

Part of the UI is dependent on two sensor values to provide feedback on what and where 

the user is looking.  One feedback is the eye tracking sensor data, and the other is the head pose 

of the headset unit.  These are discussed below: 
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5.3.2.1 Eye Tracking Implementation 

Lumin’s SDK already has a working library for eye tracking.  This includes a calculated value 

of an eye gaze position fixation.  This fixation point is then utilized to position the Model nodes 

to follow the eye gaze of the user.  As the user switches states, the position is locked and can be 

stored for use by the Arm Controller.  As the sensor value updates every loop, the Model Node 

position is subsequently updated in real time.  The user can then effectively use a Targeting 

Model Node as a reticule to home into desired target objects. 

There are some limitations to using the eye gaze fixation point and they are listed below: 

• Accuracy of targeting for objects further than approximately 3 feet starts to 

significantly drop. 

• Targets closer than approximately 6 inches will not be registered visually due to 

the field of view restriction of the display unit. 

• There is a significant mental effort to use eye tracking as a locking method.  This 

seems to be common knowledge and is even mentioned by Magic Leap to be 

aware of fatigue from using this for a prolonged period. 

5.3.2.2 Head Pose Implementation 

One key aspect of the UI is that it always must be persistent to be within the field of view 

(FOV) of the user.  This means that the radial position and directional front vectors of both the 

Text nodes and Model nodes must face the user much like a floating billboard.  If not, the nodes 

would stay static in 3D space.  This is implemented by using the head pose information of the 

headset.  Part of the Lumin SDK library is only a call out for the headset’s Up Vector and Forward 

Direction Vector.  However, the orientation call out for the nodes will need a quaternion format 
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input.  We utilize a function to convert the two vectors to the quaternion format by using the 

following set of equations: 

 
D = norm(Forward Direction Vector) (46) 

 
X = norm(Up Vector × D) (47) 

 
Y = norm(D × X) (48) 

 

𝑄𝑤 =  
√1 + 𝑋𝑋 + 𝑌𝑌 + 𝐷𝑍

2
 (49) 

 

𝑄𝑥 =
(𝐷𝑌 − 𝑌𝑍)

(4 ∗ 𝑄𝑤)
 (50) 

 

𝑄𝑦 =
(𝑋𝑍 − 𝐷𝑋)

(4 ∗ 𝑄𝑤)
 (51) 

 

𝑄𝑧 =
(𝑌𝑋 − 𝑋𝑌)

(4 ∗ 𝑄𝑤)
 (52) 

 
The subsequent Qw, Qx, Qy, & Qz are then used to update the orientation of the Nodes 

to ensure proper placement of texts and models in the User Interface.  Minor modification to the 

sign of the values are updated depending on the set up of the nodes until proper orientation is 

achieved. 

5.3.2.3 Data Filtering 

The Targeting reticule node takes its position values based off the eye tracking sensor 

from the headset.  Output from the eye tracking sensor refreshes every 30 Frames per second, 

which translates to a very jittery output if the raw value is directly taken.  To minimize the effect 

of jitter, two strategies are implemented.  The first is to create a confidence threshold for the eye 

tracking which will only register the eye gaze position if the confidence is above this number.  

This confidence value is already available as a function call and the value of 0.90 is used.  This 
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effect filters out raw value eye tracking data that might be considered outliers.  The second is to 

create a Finite Impulse Response filter in the form of an averaging filter to smooth out the sensor 

values to effectively reduce the jittery movement of the targeting model.  This is achieved using 

the following pseudocode shown in (Figure 5.6): 

 

Figure 5.6: Pseudocode of Finite Impulse Response Filter 

5.3.2.4 Telemetry Logging 

Final outputs of the Node information are currently written to an output file, as shown in 

(Figure 5.7) once the user switches from State 3 to State 4 of the program.  This output would be 

then read by the Arm Controller to complete the trajectory calculations. 

 

Figure 5.7: Text Output from Magic Leap 
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5.4 Controller C++ Code 

 

Figure 5.8: Code Flowchart 

The main program initially used for the control system is MATLAB R2013a primarily due 

to the current availability of using the Simulink Simulation environment for the 3D simulation.  

This was then converted to C++ Code to facilitate the connection with the hardware motors for 

the robotic arm.  The overall MATLAB code is broken up into several different high-level functions 

listed below: 

• DH Parameters Function:  Inputs the angle values, and outputs a global DH Matrix 

that will be utilized in several other functions. 

• Trajectory Function:  Inputs the initial and final User defined Transformation 

Matrices and outputs the trajectory matrix which includes the calculated Position 

and Rotation Matrices per time step. 

• Forward Kinematics Function:  Inputs from the DH Parameter function and 

calculates the subsequent transformation matrices for the whole arm.  Outputs 

the Position Matrices for each link in reference to the zero frame. 
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• Joint Limit Function:  User inputted physical joint limits that sets the maximum 

and minimum joint angles of the system that will be used in the Weight Matrix 

Gradient Projection calculation of the Jacobian Function. 

• Optimized Jacobian Function:  Inputs from the Forward Kinematics Function and 

Joint Limits Function and begins the optimized Jacobian calculation, including the 

weight matrix gradient projection and the SR Inverse.  Outputs the Jacobian 

pseudoinverse to be use for the resolved rate calculation. 

• Main Code Function:  Main loop of the program incorporating the Optimized 

Jacobian, Forward Kinematics, Trajectory, and Animation Functions.  Also includes 

the calculation for the resolved-rate solution.  The main code follows the block 

diagram flow as shown in (Figure 5.8). 

5.4.1 Kinematics.cpp 

The conversion of the MATLAB functions to C++ required combining the high-level 

functions, as discussed in the preceding section, into a block specifically for handling the 

calculations.  This was done to simplify debugging and expedite the verification of the 

mathematics.  Some of the functions created are direct conversions from MATLAB, however, new 

functions were created for to simplify the workflow of the calculations: 

• Kinematics.initialStart:  Input to this function is the Ti & Tf matrices derived from 

Magic Leap, as well as user inputted Speed Limits for calculating the time the 

program needs to complete the motion.  This function serves as the initial check 

to ensure the matrix inputs are properly populated, and it is also responsible for 
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converting between the Bitwise reading from the motors (along with its required 

gear ratios) into a radian value. 

• Kinematics.updateTheta:  Considered the main code that handles the Jacobian 

calculation, the Forward Kinematics, and a reconversion from radian values to 

Bitwise values output required for the motors.  Inputs to this function are the 

previously calculated joint angles from a preceding loop, and the calculated 

trajectory for the arm motion.  Output is the Bitwise value of the calculated angle. 

• Kinematics.getJacobian:  A subfunction within the updateTheta function.  This 

function is responsible for the Optimized Jacobian, Joint Limit Avoidance.  Input to 

the function are the previously calculated joint angles from a preceding loop, and 

the output is the Jacobian Inverse. 

• Kinematics.forwardKinematics:  A direct conversion of the Forward Kinematics 

function from MATLAB. 

• Kinematics.findDHTable:  A direct conversion of the DH Parameter Function from 

MATLAB. 

• Kinematics.getTrajectory:  A direct conversion of the Trajectory Function from 

MATLAB. 

5.4.2 Motor.cpp and Dynamixel SDK 

Since the Joint Motors used are manufactured by Dynamixel, the primary control program 

must use the Dynamixel SDK C++ Libraries provided by ROBOTIS [Robotis, 2020].  From the 

Kinematics.cpp, the main process of actuating the motors is through angular position control 
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which means the input to the motors are specific angles.  As such, from the Dynamixel Libraries, 

three main functions were created to facilitate this control scheme: 

• Dynamixel.moveTogether:  This is considered another main function of the 

controller.  This function activates the Torque setting on all the motors at the same 

time, moves the motors to the inputted angle, and does stall detection for each 

motor all at the same time. 

• Dynamixel.setParams:  Another key function that alters the characteristics of the 

motors.  This function sets a value to a specific parameter in a motor depending 

on which address on its electrically erasable programmable read-only memory 

(EEPROM) table is called.  This can be used to change maximum velocity values or 

maximum acceleration values for better system stability as an example. 

• Dynamixel.getAllValues:  This is the read function that detect the current value of 

the parameter we are interested in.  This is used for reading position and velocity 

values used for data analysis during testing. 

As a note, the Dynamixel Motors in our unit all have an in-built position encoder that 

determines the current Angular position of the joint.  The resolution of the Encoder is 4095 

Pulses/Revolution.  This entails that our angular resolution is approximately 11.375 degree per 

pulse.  This is critical since input to the motors are in integers with lower resolution, while 

calculated angles are far more precise which can lead to positional accuracy issues  

5.4.3 Controller.cpp 

This block is responsible for tying all the other programs to facilitate Arm motion.  This 

main code is responsible for the trajectory generation, and the reading and writing of files.  The 



www.manaraa.com

40 
 

flow chart of the system is as shown in (Figure 5.9).  The main checks to the hardware, as well as 

the reading and writing of information to motors are handled by this block. 

 

Figure 5.9: Controller.cpp Control Flow 
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Chapter 6: Hardware Development and System Integration 

6.1 Magic Leap 

 

Figure 6.1: Magic Leap Headset 

 For the visual sensor, we utilized Magic Leap, shown in (Figure 6.1), which is off the shelf 

wearable head unit worn similarly to glasses [Magic Leap, 2019].  The headset weighs 316 grams 

and has a Field of view of 50 degrees.  It is powered by a portable computing unit called the Light 

Pack as shown in (Figure 6.2).  Weighing 415 grams, this unit has a 6 core CPU, Nvidia CUDA 

Graphics Card, and can run at 1.7 Ghz.  All programs are uploaded into the Light Pack. 
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Figure 6.2: Magic Leap Light Pack 

While the Magic Leap has a multitude of sensor equipment and capabilities, only the 

relevant systems to this project will be discussed, primarily the following: 

• Eye Tracking 

• Head Tracking 

• Depth/Room Perception 

Integrated to the head unit are eye tracking sensors that track the pupil orientation via 

infrared reflection.  A gyroscope and accelerometer sensors are also installed on the unit for 

determining head orientation and movement; this information is necessary in order to keep the 

GUI always facing the user especially when the head is moving around. 
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6.1.1 Eye Tracking 

 

Figure 6.3: Infrared Sensor Location 
Note: BY-NC-SA-3.0 by Copyright Owner. 

As mentioned, the Magic Leap has two IR Omnivision CameraCubeChip camera sensors 

imbedded in each lens behind a dark filter as shown in (Figure 6.3) [iFixit, 2020].  Working off the 

principle of infrared reflection off the cornea and the pupil of the eye, a gaze direction can be 

calculated for each eye.  If the user focuses on a point, through the concept of stereo scoping 

parallax, a fixation point in space can be estimated.  The eye tracking sensor and the fixation 

point currently update the reading at 30 frames per second.  Due to the placement of the sensors 

below the lens, it was discovered that this may potentially impact the accuracy of the eye 

tracking, especially if the headset utilizes multiple users or if the person uses spectacles.  To 

minimize this issue, an eye tracking calibration event must be performed at start up for every 

new user. 

6.1.2 Head Tracking 

Located in the Headset is an integrated IMU for determining head pose.  While 

information about its exact location and manufacturer is scant, most of the onboard systems 

converge into an electronics board area in the middle of the headset unit as shown in (Figure 

6.4).  During start up, Magic Leap takes the boot up position of the headset and uses that as the 
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world origin for that session.  All world or relative coordinate systems will be based off that initial 

point.  From the IMU sensor, we can derive an Up Vector and a Forward-facing Vector to 

determine the head tilt and view direction of the user.  These values are also used to ensure the 

augmented reality 3D objects or text the user is seeing are persistently within the user’s field of 

view. 

 

Figure 6.4: Electronic Board Location 

Note: BY-NC-SA-3.0 by Copyright Owner. 

6.1.3 Depth Tracking 

 

Figure 6.5: IR Projector Location 

Note: BY-NC-SA-3.0 by Copyright Owner. 

Located at the Nose Bridge Support as shown in (Figure 6.5), this utilizes an Infrared 

Projector to mesh out a room, and a subsequent IR sensor to detect the reflected IR wave.  
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Extremely useful in mapping out obstacles or large objects, this sensor helps store a landscape 

map that determines virtual boundaries in which the AR information must adapt to. 

6.2 Robotic Arm Hardware Development 

 

Figure 6.6: Hanson Arm See Through Top View 

The base model of the arm system we are using, as shown in (Figure 6.6), was designed 

by Gerardo Morales as part of the development of the Sophia Robot Project by Hanson Robotics 

Ltd [Morales, 2018].  The arm has 12 degree of freedom (7 up to the wrist and 5 for hand/digit 

actuation) and is proportional to the typical dimensions of an adult human arm.  The CAD 

Software utilized was Solidworks 2017, and the design fully incorporates the required hardware 

that is necessary to physically build the unit.  For this project, only the right arm was used 

primarily to determine the feasibility of the design, and to minimize cost. 

6.2.1 Housings 

Housings for the arm was 3D printed using the 3D models as base reference.  Most of the 

housings follow a “clam shell” type design to enclose the parts and motors.  Three materials have 

been used in this build as discussed below: 

• Fused Deposition Modeling (FDM) Polyethylene Terephthalate-Glycol (PETG) – 

Initially chosen for most of the housings since it provided a relatively cleaner part 

than the available materials of Nylon or Polylactic Acid (PLA) as shown in (Figure 
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6.7).  Much of the issue from other materials stemmed from post print processing 

and clean up, and PETG offered the least post processing during that time.  One 

main drawback, however, was the shrinkage rate of the material after printing.  

We estimate a roughly 2% - 3% shrinkage for the housings which caused extremely 

tight fits for certain parts.  Other issues were also discovered, which will be 

discussed in detail in the next section. 

• FDM Acrylonitrile butadiene styrene (ABS) – This material became the primary 

material of 3D printing choice due to its resistance to breaking and cracking, as 

well as its capability to produce high resolution prints.  In areas of the arm that 

will potentially see higher stresses due to motion, key components have been 

replaced with this material as shown in (Figure 6.8).  However, the main downside 

of this material is that it is very difficult to print with as it needs almost optimum 

environmental conditions during the print process to avoid any imperfections in 

the final part. 

• Stereolithography (SLA) Resin – This method and material was chosen primarily 

for parts that needed an extremely high level of resolution and that does not see 

any significant stresses.  Initial high parts, such as fingers or joint supports, that 

were printed in PETG or ABS resulted in un-usable parts.  Though significantly 

more expensive (5X versus the normal PETG print cost), the new parts showed 

better quality as evidenced in (Figure 6.9).  The main drawback, however, is that 

the parts need more curing time after printing to achieve its highest strength. 
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Figure 6.7: FDM 3D Print Material Comparison: (1) Nylon, (2) PETG, (3) PLA 

 

Figure 6.8: Bracket Construction Comparison between PETG (Left, Black Color) versus ABS 
(Right, White Color) 
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Figure 6.9: Finger Construction Comparison between PETG (Left, Black Color) versus SLA Resin 
(Right, Grey Color) 

6.2.2 Hardware Build Progression 

The build of the robotic arm is based off the Solidworks model developed by Morales.  In 

further review of the design, it was determined that significant items were incomplete, and that 

the design was at best at a prototype level.  It became understood that there will need to be on-

the-fly adjustments to the design as the build progresses to address any gaps or inconsistencies.  

A detailed breakdown of the cost will be discussed in a subsequent section. 

Priority was to order the equipment and housings for the arm.  The Bill of Materials (BOM) 

was generated based off the model information, then a Make/Buy analysis was conducted to 

determine which parts will be off the shelf bought items or custom-made parts.  It was 

determined that the hardware design needed 163 distinct parts, with some parts reporting up to 

5 subassembly levels down from the main assembly. 

Most of the custom-made parts were 3D printed housing of varying sizes and material 

depending on the part as discussed in another section.  We single sourced the custom 3D parts 

to USF’s Advanced Visualization lab with an approximately 1-2-week turnaround time for making 

the parts or the parts were printed on personal 3D printers.  Upon receiving a part, significant 
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post processing (sanding, cutting, filing, smoothing, grinding) was required to remove any 

connected support structures, as shown in (Figure 6.10), or expand certain locations with 

extremely tight fits. 

 

Figure 6.10: ABS Housing with Support Structures from 3D printing Still Fused to the Housing 

In parallel to the receiving of parts and 3D print post processing, a test stand support 

structure known as the “Base Structure” was designed and built for supporting the arm.  The 

structure utilized an 80/20  style frame members, with a mounting plate for holding the arm as 

shown in (Figure 6.11).  This enables portability for the unit in the case of demo showing or 

transferring to another location. 
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Figure 6.11: Base Structure for Robotic Arm 

Prior to installing all the requisite parts and motors, an initial fit up of the overall arm was 

conducted to have an idea of the overall motion and workspace of the arm as shown in (Figure 

6.12).  This set up was also used to determine how to proceed with the motor installation by 

breaking up the subsequent parts of the arm into 5 “regions” as outlined in (Table 6.1) that 

roughly relate to the joint number to facilitate parallel installation of motors.  Note that for each 

Region, an anchor point must be physically established with the preceding region to facilitate 

motion with the exception for Region 1 which is anchored to the test stand. 

The progression sequence was to go from Shoulder Motors down to the wrist motors, 

and subsequently test the motors along the way.  It is to be noted that each degree of freedom 

is actuated by a motor and linkage system as detailed in (Table 6.1). 
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Figure 6.12: Fit Up of Housings for Arm 

Table 6.1: Linkage Type per Joint 

Region # 
Arm 

Joint # 
Motor Description Manufacturer Linkage System Ratio 

1 1 MX-106R Dynamixel 
Timing Belt 

Pulley 
1:1 

2 2 MX-106R Dynamixel 
Timing Belt 

Pulley 
2:1 

3 3 XM430-W350-R Dynamixel Internal Gear 2.88:1 

4 4 MX-64AR Dynamixel Timing Belt 2:1 

4 5 XM430-W350-R Dynamixel Bevel Gear 2:1 

5 6 XM430-W350-R Dynamixel Wire Pulley 1:1 

5 7 XM430-W350-R Dynamixel Wire Pulley 1:1 
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Figure 6.13: Region 1 Major Components (1: Housing, 2: Pulley Block, 3: Motor) 

Region 1’s purpose is to actuate the arm’s Shoulder Flexion/Extension.  The design 

involves a direct connection to the test structure as well as a set of matching housing that freely 

rotates on a central axis which marked the axis of rotation for that joint in the Kinematic 

evaluation. Region 1, as shown in (Figure 6.13), consists of 3 main parts, the mount housing, item 

1, serves as the anchor connection between the test stand and rotating portions.  Item 2 is the 

driven rotating pulley block, and Item 3 is the driving motor which is anchored.  This area poses 

the highest levels of torques, especially if the arm motion showcases full arm extension, so 

techniques to minimize slippage in the driving mechanism must be implemented. This was solved 

by changing out the pulley to a direct drive interface as shown in (Figure 6.14). 
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Figure 6.14: Direct Drive Interface for Motor 1 

 

Figure 6.15: Region 2 Major Components (1: Bracket, 2: Pulley Block, 3: Motor, 4: Driven Gear) 

Region 2 is designed to actuate the arm’s Shoulder Abduction/Adduction motion.  

Consisting of 4 main parts, the actuation of the motion is done by anchoring the pinned shoulder 

axis, and having the driving motor float around pin as shown in (Figure 6.15).  The main 

connection to Region 1 is a bracket (Item 1) connected to the rotating pulley block.  This bracket 
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is a critical piece since it is a mechanical torque transmission point essentially carrying all the load 

of the arm and its accompanying motion stresses.  Currently, the temporary material used for its 

construction is ABS just due to availability, however, we will switch it out to a metal construction 

as soon as it is available.  Item 2 is the driven pulley block with the design intention of being 

anchored to Item 1 of which means the part does not spin freely.  This rests on a pinned 

connection serving as the axis of rotation for the joint.  Item 3 is the driving motor with pulley 

block, which is directly coupled with the overall housing of Region 2 in which actuating the motor 

will make the whole housing freely move about the pinned axis.  Lastly, Item 4, is the driven gear 

for Region 3, directly coupled with the housing of Region 2 & Region 3 which serves as the anchor 

point in which Region 3 rotates from. 

 

Figure 6.16: Region 3 Major Components (1: Drive Motor, 2: Drive Motor) 

Region 3 is designed for the Humeral Rotation motion of the arm.  The main axis of 

rotation for this joint is the centerline of the driven gear which connects both Region 2 and Region 
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3.  This region consists of two main components as shown in (Figure 6.16).  Item 1 is the driving 

motor connected to an inner gear system and is directly coupled with the housing.  Note that the 

driven outer gear (Item 4 from Region 2) is not directly connected to the overall housing of Region 

3, enabling the whole housing to “float” and rotate on that axis of rotation.  Item 2 is the driving 

motor for the next joint motion, Elbow Flexion/Extension, and is anchored with Region 3’s 

housing.  Region 3 also has space to allow storage of a motor controller board, but for this build, 

that space was not utilized since the motor controller board was placed elsewhere. 

 

Figure 6.17: Region 4 Major Components (1: Pulley Block, 2: Bracket, 3: Motor, 4: Driven Gear) 

Region 4 is designed for two joint motions: Elbow Flexion/Extension and Wrist 

Pronation/Supination.  This region consists of 4 main components to achieve those motions as 

shown in (Figure 6.17).  Item 1 is the driven pulley block for the elbow motion actuated by the 

driving motor from Region 3.  This pulley block is connected to the region’s housing utilizing Item 

2, a bracket/pin connection, and this pin’s centerline serves as the axis of rotation for the motion.  
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Region 3’s housing also overlaps this pin connection, and this is what ties both regions together.  

Item 3 is the driving motor with a miter gear for the wrist twist motion.  Coupled with Item 4 

which is the driven gear of this assembly, this part floats to allow for free rotation within the 

housing.  As a note, Item 4 is also anchored to the housing on Region 5. 

 

Figure 6.18: Region 5 Major Components (1: Pulley Block for Joint 7, 2: Motor for Joint 6, 3A/3B: 

Motor for Finger Actuation, 4: Pulley Block for Joint7, 5: Pulley Block for Joint 6) 

Region 5 hosts the greatest number of motorized components as this region holds some 

of the motors to actuate the finger movements as well as the wrist motion for Flexion/Extension 

and Ulnar/Radial deviation.  Most of the motors in this region will utilize a wire pulley system 

which will make the area congested with wires snaking its way to its intended locations.  All the 

motors are anchored with the housing.  There are 5 main components as shown in (Figure 6.18):  

Item 1 controls Joint 7, Item 2 controls Joint 6, Items 3A and 3B are motors for Finger motion in 

the hand region, Item 4 is the support structure with a pulley block whose centerline being the 

axis of rotation for moving Joint 7, and Item 5 is the pulley block for controlling the motion for 
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Joint 6.  Note that since the current controller design is not meant to implement finger motion, 

Item 3 has been removed for the time being to optimize weight and space. 

 

Figure 6.19: Region 6 Hand Model 

Region 6, the hand area as shown in (Figure 6.19), is assembled primarily to act as a visual 

reference for the arm.  As mentioned, the current controller’s design only accounts for the 7 

degrees of freedom for arm motion, and it does not apply any motion control for the fingers.  To 

optimize weight and space, the subsequent finger motors are not installed yet for this level of 

the project. 
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Figure 6.20: Assembled Arm 

Put together, as shown in (Figure 6.20), the arm is approximately 27 inches long, roughly 

25 lbs in weight. 

 

Figure 6.21: Typical Wiring Setup for Motors 

Motor wiring setup for the Arm involves daisy chaining the motors in a serial configuration 

as shown in (Figure 6.21).  This set up utilizes Dynamixel’s U2D2 device, Item 4, which connects 

to the computer via USB.  Power to the motors is provided using an external power supply, Item 

1, which connects to the SMP2Dynamixel Board, Item 2, that acts as the power distributer for the 

motors.  All the motors are serially daisy chained in order, connecting to the U2D2 device, which 

will provide data/communications to actuate the motors.  The motors use a 4 pin RS485 cable 
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for power and communications.  The default baud rate used for the communications with USB 

cable is 57600 bps. 

6.2.3 Lessons Learned 

During the hardware build, several items of improvement were recognized to improve 

the performance of the system and optimize the build of the assembly.  These are discussed 

below: 

1. 3D Printing Housing Shrinkage – The major factor in installation was accounting 

for the overall shrinkage of the 3D printed housing once received.  As already 

mentioned, it was generally understood that thermoplastic printed materials 

shrank roughly 2-3% after printing, but upon initial inspection of the larger 3D 

printed pieces, this was not as evident.  Only when more components began to 

populate the housing is when this issue came to the forefront.  The option at that 

point was to reprint the housings to account for the shrinkage, or to use as is.  The 

decision was to choose the latter option for the sake of continuation of the build.  

This had the effect of certain parts fitting extremely tight, which would periodically 

cause stress fractures if certain screws were fully tightened.  A key design 

improvement is to determine prior to the build what would be the necessary 

volume scaling for every part to minimize any tight fit installs. 

2. 3D Printing Parameterization “Infill” – Infill is the amount of material within the 

volume of an FDM 3D printed part.  This is usually determined as a percentage of 

volume.  The primary characteristic of infill is correlated to the overall strength of 

the part.  This does come at a drawback of longer print times and more material 
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usage.  As a rule of thumb, any part that will see any significant stresses will have 

60-80% infill, while aesthetic parts can be 30%.  This specifically relates to the 

components that see significant wear such as the beveled gears.  Initial build had 

the infill at 30% which cause severe part failures.  Currently infill at those areas 

are 100%. 

6.3 Cost 

The breakdown of the Cost is as shown in (Table 6.2).  Approximately 40% of the cost is 

in the motors alone.  A cost down analysis through alternative manufacturers was done on these 

motors potentially saving about $800, however it was decided for the initial build, that the 

current motors would be vetted out.  The 3D printed housing cost is an estimate based off volume 

and it include some of the geometries that are meant to be custom fabricated from metal which 

can potentially increase the cost of the overall system. 

Table 6.2: High Level Cost of Project 

High Level Cost Breakdown 

Description Cost 

Motors + Control Boards $3,000 

Hardware (Nut/Bolts/Screws/Etc) $500 

3D printed housings (Estimated) $1,200 

Test Stand $150 

Magic Leap $2,300 

  

Total $7,150 
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6.4 Integration of Hardware and Software 

6.4.1 Low Power Testing (LPT) 

 

Figure 6.22: Dynamixel Wizard Motor Test 

Low power testing (LPT) of the motors involved using only a 12volt/2 amp power supply 

to power the daisy chained motors and actuate each motor individually using the Dynamixel 

wizard as shown in (Figure 6.22).  Through the LPT, key parameters that impact the code were 

identified and addressed as discussed below: 

• Reverse Mode Setups: Positive axis rotation of the motors does not match the 

positive axis rotations of the frames established from (Figure 4.2).  Joints 3,4,6, 

and 7 were identified to need to operate in reverse mode in order to match the 

same joint motions from the MATLAB simulations. 

• Velocity Profiles: In position control mode, when given a goal position the motors 

will attempt to complete the actuation in the shortest time possible.  This means 

the motors will rotate at its maximum velocity which causes damage to the whole 
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arm.  Testing indicated that an angular velocity of 5 rpm a safe speed for operation 

and is implemented in the code. 

• Joint Limits: During LPT, it was found that certain joints have a much more 

restrictive allowable angle zones than what was found in simulation.  This was 

caused by tight tolerance, friction, or limitation on wiring.  Exceeding these limits 

can potentially damage the unit that will need time for repair.  The new Joint Limits 

for each joint was found implemented in the code. 

6.4.2 High Powered Testing (HPT) 

 

Figure 6.23: High Power Test In Progress 

High Powered Testing involved using a 12volt/10 amp power supply, and primarily utilized 

the Controller.cpp C++ code for testing.  This testing involved direct joint control of the motors, 

and the verification of the Dynamixel.moveTogether function.  Several issues were found and 

addressed as discussed below: 
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• Acceleration Profiles: The velocity profile for the motors were a rectangular curve.  

This had the effect of high accelerations at the beginning and end of the motion 

loop which translated to extremely jerky movements.  This was solved by adding 

an acceleration profile for each motor making the velocity profile trapezoidal. 

• Read Speed Limitation: During every loop, the controller read the positions of each 

motors for feedback.  This had the effect of delaying the motors from entering the 

next loop.  This read loop was removed from the code, and the arm motion moves 

much quicker between loops. 

6.4.3 Proof of Concept Realization 

To integrate the arm hardware, arm controller, and the Magic Leap, a series of steps must 

occur in order.  The initial step was to set up the Magic Leap environment directly to the 

computer so the telemetry text file data can be accessed by the controller.  Next, within Magic 

leap, the eye tracking program was opened, and the initial prism positioning was set to the 

physical anchor position of the arm.  The user then proceeds to acquire the required trajectory 

positions using the Magic Leap.  When the arm is ready to move, a switch is activated to actuate 

the motion of the arm.  A visual of this is shown on (Figure 6.24). 

 

Figure 6.24: Proof of Concept Visualization 
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Chapter 7: Testing and Results 

7.1 Methodology 

To verify the efficacy of the Humanoid Arm Robotic Unit Control System, simulations and 

experimental tests were developed and conducted. 

For the simulations, MATLAB was the primary computational program used.  A 3D image 

of the Arm unit was developed in VRML for visualization along a wireframe model developed in 

MATLAB to track the positioning of the arm within a set coordinate system.  Details on the 

simulation will be discussed in the following sections. 

Once the simulations were completed, experimental tests were done on the Arm 

hardware to observe how well the controller works with an actual unit.  Since the Arm hardware 

is susceptible to wear and tear, stable trajectories were chosen to minimize damage or 

maintenance during the testing phase.  Results from the experimental testing are then compared 

with the simulation values. 

7.2 Simulation 

7.2.1 Comparison Between VRML and MATLAB Simulation 

Comparing the two simulation platforms, we see that both showcase the same 

positioning of the arm as dictated by the resolved-rate algorithm.  (Figure 7.1) & (Figure 7.2) show 

trajectories that are known to be stable.  One major difference, however, is that the VRML 

Simulation (left image) has a bit of perspective view versus the almost isometric view for the 
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Wireframe Simulation (right image).  Note also that the right image has a bolded trajectory line 

(in red and green) representing the trajectory of motion, while the left image does not. 

 

Figure 7.1: Comparison of VRML (Left) and Wireframe (Right) Example 1 

 

Figure 7.2: Comparison of VRML (Left) and Wireframe (Right) Example 2 

7.2.2 Simulation Results of the Control System 

To showcase the characteristics of the control system, we will compare the different 

Optimization Configurations between two trajectories:  The first will showcase a “stable” 

trajectory where the end effector is well within the limits of its workspace, and that there are no 

significant singularity zones in its travel.  The second will showcase an “unstable” trajectory 

effectively forcing the end effector through workspace limitations, well past joint limits, and 
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singularity zones.  Each trajectory will start at a ready position where the arm is partially extended 

due to placing all the joints within the middle of their limits.  This is done so the arm will not start 

at a potential singularity position.  The following configurations are compared: A) With SR Inverse  

and With Joint Limit Avoidance (Weighted SR Inverse Optimization Solution), B) Without SR 

Inverse and With Joint Limit Avoidance (Weighted Least Norm Optimization Solution), and C) 

With SR Inverse and Without Joint Limit Avoidance (SR Inverse Optimization Solution).  The 

following constants are used throughout the simulation test as shown in equation (53). 

 
w0 = 100000

k0 = 100
SpeedRev = 4 rpm

SpeedLimit = 10 cm/s

(53) 

 
7.2.3 Stable Trajectory Comparison 

Configuration A as shown in (Figure 7.3) employs the SR Inverse and the Joint Limit 

Avoidance equations in calculating the motion of the arm (Weighted SR Inverse Optimization 

Solution).  Joint limits representing the physical robotic arm are active in this mode.  The 

characteristic of this configuration is that the robotic arm will do its best to complete the 

trajectory and maintain stability at the cost of end effector trajectory accuracy. 

Configuration B as shown in (Figure 7.4) employs only Joint Limit Avoidance equations 

while striving to make the end effector as accurate to the trajectory as much as possible 

(Weighted Least Norm Optimization Solution). 

Configuration C represents the best-case scenario of mobility for the arm as there are no 

limitations of the joint angles that can reduce its theoretical workspace while maintaining 

stability (SR Inverse Optimization Solution).  As showcased in (Figure 7.5), the position angles, the 
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joint velocities, and the Manipulability curves are much more smoother than the other 

configurations.  This will be the basis of comparison for the other configurations. 

During the simulation for Configuration A and Configuration B, as the arm reaches its joint 

limits, the Joint Limit conditions from equation (8) are activated.  This is evidenced by the sharp 

but very short gradients in the velocity graph indicating that a joint has reached a limit and is 

straddling that boundary, but its velocity is being reversed to bring back the joint within its 

allowable zones.  In general, the overall velocity curve profile is still visible.  An important note is 

that joint limits effectively reduce the overall workspace of the arm.  This means that the 

calculated end effector trajectory can potentially cross a space where the end effector cannot 

physically go into.  As the end effector traverses its trajectory, the end effector eventually ends 

up in such a zone.  For Configuration A & Configuration B, this is usually characterized by rapid 

and large gradients in the velocity curves, and the curve profile is lost.  It is in this zones that 

Configuration A & Configuration B start to differ significantly.  First off, for Configuration A, the 

joint limits are observed throughout its motion as evidence of the flatlining of the position angle 

curves for some joints.  Furthermore, as the calculated Manipulability values drop below the “w0” 

threshold, the second term in the singularity robust inverse calculations shown in equation (11) 

starts to activate.  The “k” factor of equation (11) starts to augment equation (13) deviating the 

end effector from its calculated trajectory in order to keep the end effector out of the singularity 

zone, but not letting it stray too far off course.  This augmentation also has the effect of keeping 

the Manipulability of the system relatively high, since we never go into singularity, especially in 

cases where the trajectory is clearly out of the workspace of the end effector.  This is showcased 

in (Figure 7.6) where the manipulability for Configuration A is considerably much higher than 
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Configuration C.  Configuration A will calculate and complete its motion, though at the expense 

of accuracy.  This concept might be detrimental for standard robotic manipulators, but for our 

application of a wearable prosthesis, the loss of accuracy can be argued to be negligible since the 

user’s body is not anchored and can move to compensate.  In contrast, Configuration B has no 

way of solving for the singularity.  The arm motion is already limited by the joint angle limits, 

hence the overall workspace for the arm is also reduced.  In the instance the end effector reaches 

a singularity zone, the arm struggles to find a solution, and in the process exhibits jittery motion 

and, in some cases, forces a joint angle position that is not within its limits.  The arm is not able 

to fully complete its trajectory either.  In comparing the Manipulability graphs between 

Configuration B and Configuration C in (Figure 7.6), initially, the motion of the arm was in the 

stable regime.  As it reached a singularity zone around 4 second time frame, the Manipulability 

values started to return a null value.  Further investigation indicated from the Joint Limit 

Avoidance weight matrix “W” showed that two joints are weighted to infinity meaning they 

cannot move and when applied to equation (10) returns that null value.  At this point, the arm 

was effectively stuck in place and couldn’t continue its motion. 
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Figure 7.3: Joint Angles, Joint Velocities, and Manipulability for Stable Trajectory for Arm 
Configuration A 

 

Figure 7.4: Joint Angles, Joint Velocities, and Manipulability for Stable Trajectory for Arm 

Configuration B 
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Figure 7.5: Joint Angles, Joint Velocities, and Manipulability for Stable Trajectory for Arm 

Configuration C 

 

Figure 7.6: Stable Manipulability Graphs Scaled for Comparison Configuration A (Left), 

Configuration B (Middle), and Configuration C (Right) 

7.2.4 Unstable Trajectory Comparison 

The unstable trajectory regime is where Configuration A shown in (Figure 7.7) shows a 

distinct advantage over Configuration B shown in (Figure 7.8).  Configuration A was able to 
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complete its trajectory, while Configuration B suffered a severe system instability that coincides 

with its Manipulability values unable to be calculated and the erratic gradients in the velocities 

frequently around the 4 second mark as shown in (Figure 7.8).  Configuration A still also exhibits 

the same characteristics with its velocity gradients as its equivalent in Stable Trajectory, and again 

it is the only configuration to hold the joint limits intact.  As the arm moves through its trajectory, 

the end effector encounters the singularity zones, but the SR inverse equations become active 

ensuring that the end effector is never in a singularity.  This has the added effect of keeping 

Manipulability high as shown in (Figure 7.10). 

 

Figure 7.7: Joint Angles, Joint Velocities, and Manipulability for Stable Trajectory for Arm 

Configuration A 



www.manaraa.com

72 
 

 

Figure 7.8: Joint Angles, Joint Velocities, and Manipulability for Stable Trajectory for Arm 

Configuration B 

 

Figure 7.9: Joint Angles, Joint Velocities, and Manipulability for Stable Trajectory for Arm 

Configuration C 
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Figure 7.10: Unstable Manipulability Graphs Scaled for Comparison Configuration A (Left), 

Configuration B (Middle), and Configuration C (Right) 

7.3 Experimental Testing 

Using a predetermined stable trajectory, the robotic arm will operate 3 times from start 

to finish.  The output angles from the motors will be recorded and graphed.  The output graphs 

will be compared between each run and see the difference.  This is to verify how repeatable the 

system motion is.  The output graphs will then be compared to the simulation graphs.  This is to 

verify how accurate the motion for the system is.  Using the same predetermined trajectory, the 

calculated Manipulability from the simulations will be compared to the calculated Manipulability 

from the controller. 

Three runs were conducted in succession, and the trajectory chosen for the runs was a 

known stable trajectory.  Each run consists of a joint controlled motion from rest position to a 

ready position.  The ready position is a predetermined set of joint angles that was chosen to 

minimize starting the calculations from a singularity or a joint-locked point.  From the ready 

position, the arm will move to complete its calculated trajectory.  Once it reaches its final 
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trajectory point, the arm resets back to the ready position and finally goes back to its rest 

position.   

7.3.1 Experimental Graphed Results 

Results from the testing with the HARU Control system are shown below.  Three runs 

were performed, and each run is compared to the simulated values from MATLAB.  Motor 

feedback is from the information read at a point during the trajectory sampled at 60Hz. 

 

Figure 7.11: Simulation Results for Joint Position and Manipulability 

 

Figure 7.12: Motor Feedback Results for Joint Position & Manipulability for Run 1 
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Figure 7.13: Motor Feedback Results for Joint Position & Manipulability for Run 2 

 

Figure 7.14: Motor Feedback Results for Joint Position & Manipulability for Run 3 

7.3.2  Discussion 

As a reference, the simulation results shown in (Figure 7.11) will act as the reference 

baseline for comparison between the experimental runs.  The key points of comparison between 

the simulation and the experimental results are the following: the effect of the Joint Limits, the 

smoothness of the Joint Angle Profiles, and the effects of SR Inverse optimization. 

For all the runs, motor Joint Angle feedback started at the rest position of the arm.  

Samples 0-100 of the Joint Angle feedback showcased the motion to the ready position.  From 

Samples 100 onward showcased the trajectory motion. 
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First thing to highlight is that all the runs showed that the Joint Limit Avoidance performed 

as expected.  While some joints did start to reach its limits, they never exceeded as evidenced by 

the flattening of the Joint Angle Curves.  Furthermore, it is also noticed that once the motion was 

never in any sort of instability as evidenced by the high Manipulability values. 

Comparing the Simulated Positions versus the runs, the first thing to note is the 

smoothness of the curves.  Run 1 Position values as shown in (Figure 7.12) closely matches the 

smoothness of the simulation curves compared to the other runs, but the overall position profiles 

are very rough.  This is primarily attributed to the velocity profile selected for the motors.  The 

motors are limit locked at a velocity as in the simulation, but the simulation doesn’t account for 

acceleration as best evidenced in the velocity profile from (Figure 7.3).  Such rapid changes in 

velocity is very damaging to the arm, so a physical safety limit has been added to the motors to 

be locked at a certain acceleration that was found safe during High Power Testing phase. 

It was also noticed that on the latter end of the trajectory, there were some high 

positional jumps occurring in certain joints.  This was more prevalent in Run 2 & Run 3 as shown 

in (Figure 7.13) and (Figure 7.14) respectively.  The arm does recover, however, accuracy from 

the original trajectory is affected.  This can be attributed to several causes: 

1. Spring motion due to cantilevered/dynamic effect from moving the arm to an 

extended position due to the weight of the arm.  This tends to occur in trajectories 

where the arm will have to extend its reach. 

2. Motors slowing down at the end of a certain angle position prior to getting a new 

angle to move to, then speeding up again.  This helps contribute to the dynamic 

effects as discussed in the first bullet. 
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In comparing the Manipulability values between the simulation and controller, it was 

found that the simulation values reported larger than the controllers.  Since the form of the curve 

for the simulation matches the controller’s, the difference is attributed to rounding errors in the 

calculation.  Comparing the Manipulability between runs showed consistency in the calculation 

with no appreciable difference between them. 
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Chapter 8: Conclusions and Future Work 

8.1 Conclusions 

Presented in this thesis is an integrated control system for a powered prosthetic arm using 

an Augmented Reality Device.  The control algorithm implemented is based off a Kinematic 

resolved-rate control structure utilizing an optimized Jacobian that minimizes singularities and 

maximizes manipulability.  The hardware utilized to test the control theory is based off the 

Hanson Power Prosthetic Arm design for the Sophia project, which we built a replica of to test 

our control system.  The subsequent AR device being used for the sensory telemetry that will 

interact the user and the environment is the Magic Leap Goggles. 

Virtual simulations and experimental testing show that this control system is relatively 

robust to handle various linear trajectories, and that it is further optimized for better joint limit 

and singularity avoidance. 

8.2 Future Work – AI Development 

Part of the effort to further seamlessly integrate the robotic arm with the user’s sense of 

perception and reduce cognitive load, the intention for the future of this project is to create a 

robust artificial intelligence to help complete the following objectives:  (a) recognition of the 

environment/objects through detection and classification; (b) pose estimation of objects by 

simplifying volumetric shapes found via voxelization of superquadrics derived from 3D point 

cloud data; (c) recognition of the user’s intentions to drive the actions of the robotic arm.  
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Combining all of these with the existing platform already developed will form the basis of the 

Visual System Code as shown in (Figure 8.1). 

Another aspect of this project is to use a robust object detection algorithm, which will be 

integrated into the wearable headset, to determine what kind of object the user is looking at and 

determine the pose (position and orientation) of the object.  The latter is important since this will 

also be fed into the robotic arm controller to help create the required trajectory and grasping 

configuration for the arm and hand. 

 

Figure 8.1: High Level Visual System Code FlowChart 

8.2.1 Object Recognition 

The expected object recognition algorithms will employ a degree of discrimination and 

generalization to provide information to the controller for determining grasping position.  For 

example, a pen and a spoon could be generalized together for their shape, but the system needs 
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to know that one is a pen, and the other is a spoon leading to different grasping strategies 

depending on use of the object.   

8.2.2 Pose Estimation 

To determine hand orientation and potentially grip patterns, it is necessary to determine 

the general orientation or pose of the targeted object.  Objects can vary in sizes and shapes; 

however, most household objects can be generalized into basic volumetric shapes called 

superquadrics.  These basic shapes are easily renderable, and volumetric parameters such as 

moment of inertia, general volume size, and even object pose, can be readily extracted. 

In conjunction with using 3D Point Cloud space data of the object gathered from the 3D 

Camera, which in this case will be from the Magic Leap goggles, the plan is to fit the point cloud 

into a voxel, which is a 3D representation of a Pixel, normally a cube, and slowly decrease the 

voxel size to a set error threshold that will best fit a superquadric.  From here, the relevant pose 

information can be determined to be able to provide input on the best possible wrist orientation 

to use for the detected object.  This information will be used for grasping the intended object 

using one of the grasp patterns supplied by the prosthesis control algorithm. 
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8.2.3 Intention Recognition 

 

Figure 8.2: State/Action Network 

The plan of intention recognition will utilize a network model represented as a graph, with 

the object nodes and action/goal nodes are set with interdependence.  For simplicity, the 

action/goal states will be limited to a few action nodes just to prove its feasibility.  (Figure 8.2) 

shows a simple example of a network using class object fruit.  Note that some classes of objects 

might share the same action/goal node depending on the similarity.  Creating this intention 

recognition model should help the user feel more in tune with the device.  As more data is 

generated (cues from the object, user bias, voice recognized commands, etc.) to specifically aid 

with the intention recognition model, we will introduce machine learning to help analyze the 

minute differences in data that makes each user unique. If implementation is feasible, the 

information we get from this learning concept will help with minute fine tuning the operation of 

the powered prosthesis. 
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Appendix A: Copyright Permissions 

Permission below is for to use Figure 1.1 
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Permission below is for to use Figure 4.1 
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Permission below is to use Figure 6.3, Figure 6.4, and Figure 6.5 
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